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This paper is devoted to the use of discontinuous Galerkin methods to solve
hyperbolic conservation laws. The emphasis is laid on the elaboration of slope
limiters to enforce nonlinear stability for shock-capturing. The objectives are to
derive problem-independent methods that maintain high-order of accuracy in regions
where the solution is smooth, and in the neighborhood of shock waves. The aim is
also to define a way of taking into account high-order space discretization in limiting
process, to make use of all the expansion terms of the approximate solution. A
new slope limiter is first presented for one-dimensional problems and any order
of approximation. Next, it is extended to bidimensional problems, for unstructured
triangular meshes. The new method is totally free of problem-dependence. Numerical
experiments show its capacity to preserve the accuracy of discontinuous Galerkin
method in smooth regions, and to capture strong shocks.c© 2001 Academic Press
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1. INTRODUCTION

A wide range of numerical methods has been developed for the resolution of nonlinear
conservation laws. In particular, direct numerical simulation of compressible flows is a real
stake. It is then crucial to derive effective methods able to capture accurately real flows
including strong shocks.

This paper deals with high-order discretization methods for convection-dominated prob-
lems on unstructured meshes. In this field, Runge–Kutta discontinuous Galerkin methods
(RKDG) have raised great interest during the past twenty years. They combine the basis of
the finite volume, the finite element methods, and Riemann problems, taking into account
the physics of wave propagation. The accuracy is then obtained by means of high-order
polynomial within elements. These methods are famous for their formal high-order space
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and time accuracy, their capacity to handle complicated geometries, their high paralleliz-
ability, and their nice stability properties.

The first analysis of the method, elaborated by Reed and Hill [30], has been performed
by Lesaint and Raviart [26], for a linear transport equation. The adaptation of the scheme
to the nonlinear case, which gives rise to the problem of stability, has been first carried
out by Chavent and Salzano [10]. They proposed an explicit version of discontinuous
Galerkin method. It deals with a linear spatial discretization and an Euler forward time
discretization method. The main drawback of the method was its bad stability properties
(it was stable under a very restrictive CFL condition). Then, the method has been modified
by Chavent and Cockburn [9], by the introduction of a local projection operator (a slope
limiter), designed to improve its stability properties. The resulting scheme was proven to be
total variation diminishing in the means (TVDM) and total variation bounded (TVB) under
a fixed CFL (less than or equal to 1/2); see [35] for the definition of the TVB property.
Unfortunately, the scheme is only first-order accurate in time and the solution is affected in
smooth regions.

This history is recalled to introduce the RKDG scheme, developed by Cockburn and Shu
in a series of papers [12, 13, 15]. Their investigations into Runge–Kutta type discretization
in time for discontinuous Galerkin methods, and slope limiters that maintain the formal
accuracy of the scheme extrema have helped to improve the efficiency of these methods. It
gave rise to RKDG method of arbitrary order of accuracy both in space and time. For the
one-dimensional case, the scheme was proven to be TVB. Jiang and Shu [25] proved a cell
entropy inequality for arbitrary order of accuracy and arbitrary triangulations. The RKDG
method has been extended by Cockburn and Shu [14, 17] to multidimensional systems
for rectangular and triangular elements. They proved a maximum principle for general
nonlinearities and arbitrary triangulations.

The efficiency of the RKDG method has been widely illustrated by many authors. Indeed,
it has been tested successfully by Lomtev,et al.[28] and Sherwin and Karniadakis [32–34],
for the compressible Euler and Navier–Stokes equations. They coupled the method with
a spectral orthogonal and hierarchical set of basis functions resulting from Dubiner [21].
Numerical simulations with RKDG methods also have been done by Bassi and Rebay [3]
who proposed a mixed formulation to discretize the viscous terms. Biswaset al. [6] used
the present method to achieve parallel adaptive refinement for conservation laws. For more
details on the use of RKDG methods, see for example the introduction of [11] and [7, 19,
20, 24].

Besides being of arbitrary order of accuracy, RKDG methods are very attractive for
shock-capturing. Indeed, the discontinuous representation of the solution and the upwind
flux processing make the scheme well adapted to solutions with discontinuities. When
combined with a stabilization technique that prevents spurious oscillations near solution
discontinuities, the resulting scheme well captures strong gradients. Several forms of non-
linear limiting have been carried out to ensure solution boundedness when discontinuities
are present in the flow field. These techniques can be split into two classes: one way con-
sists in supplementing the numerical scheme with a viscosity term (see [4]), another one is
concerned with the elaboration of a projection procedure to enforce the nonlinear stability.

Cockburn and Shu have contributed precisely much to the construction of a slope limiter,
which is applied to the numerical solution given by RKDG method at each time iteration
[12–17]. Let us briefly describe the core of their work. The slope limiting is based on
piecewise linear approximations. They assume that spurious oscillations are present in the
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approximate solution only if they are present in itsP1 part. In regions where limiting
is necessary, the expansion is then truncated to second order. This technique performs
very well in practice (see for example [13]). The high-order accuracy is preserved at local
extrema by using a modified minmod function, instead of the classical one, as in the initial
version of the slope limiting. It comes to replace TVDM by TVBM property. However,
the projection is problem-dependent because of the presence of a constant, whose aim
is to enforce the TVBM property. In addition, as the method is based on second-order
approximations, we can suppose that it gives rise to a lack of information for high-order
discontinuous Galerkin methods, once the development is locally reduced to a linear term.
Biswaset al.[6] proposed an extension of the method of Cockburn and Shu to higher orders
of accuracy, for one-dimensional and two-dimensional rectangular meshes. The method is
based on theP1 TVDM version of Cockburn’s slope limiting (which is a very diffusive
procedure), and on a Legendre polynomials basis.

The discontinuous Galerkin approach is not the only existing method that can be high-
order accurate in smooth regions and nonoscillatory near solution discontinuities. For
example, the ENO and WENO schemes (see for example [1, 22, 23]) are based on high-
order polynomial reconstructions and use an adaptive stencil which permits the avoidance
of interpolation accross discontinuities. In [38], Suresh and Huynh construct a new class of
scheme: A high-order interface polynomial value is first reconstructed by using a centered
stencil. Next, the interface value is limited in order the scheme to satisfy the monotonicity
preserving property. A test determines whether the limiting procedure is needed or not, and
then accuracy near extrema is preserved in all norms. The limiter is problem-independent.
However, only one-dimensional or two-dimensional Cartesian meshes are considered, and
the stencil is all the wider as the polynomial degree is high. It can give rise to difficulties in
the boundary conditions treatment.

The case of unstructured grid of triangles is treated in [40]. Wierse proposes a new limiter
function for second-order finite volume schemes. A proof of a maximum principle is given,
for which no requirements on the domain discretization are necessary. It is shown how to
adapt this proof to the case ofP1 discontinuous Galerkin approximations.

The aim of the present work is to propose a new slope limiter for discontinuous Galerkin
methods of any order of accuracy, which satisfies the following properties:

1. it is totally free of problem-dependence,
2. unstructured triangular meshes can be treated,
3. it suppresses spurious oscillations near solution discontinuities,
4. no loss of accuracy takes place at extrema in theL1-norm,
5. the stencil is restricted to one triangle and its neighboors whatever the order of

accuracy is.

The guiding principles in those investigations are based on the papers by Cockburn and
Shu [12–17], and by Biswaset al. [6], which provide a frame of reference for the present
work.

The paper is organized as follows. Section 2 deals with one-dimensional problems. The
necessary background is reviewed, namely, the description of the Cockburn and Shu limiting
procedure for linear approximations, its extension by Biswaset al. to the case of any-order
of accuracy. In part two of this section, the proposed limiter is detailed. Numerical results
illustrate its good behavior, for any kind of solutions (regular or with discontinuities).
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Section 3 presents the extension of the new limiting procedure to triangular meshes, for the
set of basis functions of Dubiner and in the case ofP1 andP2 approximations.

2. THE DISCONTINUOUS GALERKIN METHOD WITH SLOPE

LIMITER IN ONE DIMENSION

2.1. Outline of the Discontinuous Galerkin Method

In this section, the RKDG method is briefly introduced for the one-dimensional scalar
conservation law

∂u

∂t
+ ∂ f (u)

∂x
= 0 inÄ× (0, T), Ä ⊂ R (1)

subject to the initial condition

u(x, t = 0) = u0 , ∀x ∈ Ä (2)

and periodic boundary conditions.
Let {I j } j=1...J with I j = (xj−1/2, xj+1/2) be a partition of the intervalÄ into subinter-

vals. Let us define

Vh = {p ∈ BV(Ä) ∩ L1(Ä) : p|I j ∈ Pk(I j )}, (3)

wherePk(I ) denotes the space of polynomials inI of degree at mostk andBV the space
of functions with bounded variation. Let

B j = {vl , j (x); l = 1, . . . , k+ 1}

be the basis of Legendre polynomials onI j .
For each timet ∈ [0, T ], an approximate solutionuh(t) that belongs toVh is computed.

A weak formulation of the problem is obtained by multiplying (1) by a test functionϕ. The
result is integrated onI j , and the flux term is integrated by part to yield∫

I j

∂t u(x, t)ϕ(x) dx−
∫

I j

f (u(x, t))∂xϕ(x) dx+ f
(
u
(
xj+1/2, t

))
ϕ
(
x−j+1/2

)
− f

(
u
(
xj−1/2, t

))
ϕ
(
x+j−1/2

) = 0, (4)

whereϕ(x−j+1/2) and ϕ(x+j−1/2, t) are the values of functionϕ, at interfacesxj±1/2 of
interval I j .

A discrete analogous of (4) is obtained by replacing the exact solutionu(x, t) by the
approximationuh(x, t) and the test functionϕ by each element of the basis setB j , succes-
sively.
The approximate solution can be written as

uh(x, t)|I j =
k+1∑
l=1

ul , j (t)vl , j (x) ∀x ∈ I j , (5)
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where{ul , j }k+1
l=1 are the degrees of freedom ofuh in the intervalI j .

Takingϕ = vm, j leads to

∫
I j

(
k+1∑
l=1

d

dt
ul , j (t)vl , j (x)

)
vm, j (x) dx−

∫
I j

f (uh(x, t))
d

dx
vm, j (x) dx

+ h(uh) j+1/2vm, j
(
x−j+1/2

)− h(uh) j−1/2vm, j
(
x+j−1/2

) = 0. (6)

Since solution discontinuities are permitted at element interfaces, the boundary flux
f (uh(xj+1/2, t)) is not uniquely defined. It is then approximated by a numerical flux
functionh that depends on the two values ofuh at the point(xj+1/2, t)

h j+1/2 = h(uh) j+1/2 = h
(
u+j−1/2, u

−
j+1/2

)
, (7)

with u±j±1/2 = uh(x
±
j±1/2).

The discrete weak formulation yields, by using orthogonality property ofB j ,

d

dt
um, j (t)

(∫
I j

vm, j (x)
2 dx

)
=
∫

I j

f

(
k+1∑
l=1

ul , j (t)vl , j (x)

)
d

dx
vm, j (x) dx

− h j+ 1
2
vm, j

(
x−

j+ 1
2

)+ h j− 1
2
vm, j

(
x+

j− 1
2

)
, (8)

where the integral term on the right-hand side is evaluated using Gauss quadrature.
At last, the following ODE is obtained:

d

dt
(uh) = Lh(uh). (9)

For a complete discussion of the method, the reader is referred to [11].

2.2. Existing Stabilization Techniques

The approach in this section is to describe first the limiting procedure by Cockburn and
Shu, and second the generalization of the method toPk approximations. It relies on the
construction of a slope limiter35h whose aim is to enforce nonlinear stability properties.

The TVD Runge–Kutta time discretization introduced in [36] is used to integrate the
ODE system (9) in time. It is of great importance for the method to be correctly stabilized.

Let {tn}Nn=0 be a partition of [0, T ]. The Runge–Kutta algorithm reads as

1. Setu0
h = 35h(u0h);

2. Forn = 0, . . . , N − 1 computeun+1
h from un

h as
(i) Setu(0)h = un

h;
(ii) For i = 1, . . . , I + 1 compute the intermediate functions

u(i )h =
i−1∑
l=0

35h
(
αi l u

(l )
h + βi l1t Lh

(
u(l )h

));
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(iii) Set un+1
h = u(I+1)

h .
In all the simulations, a third-order Runge–Kutta scheme is used.

When the projection35h is set equal to the identity operator, the RKDG scheme without
slope limiter is recovered. Thanks to this kind of time discretization, good nonlinear stability
properties can be obtained [11].

The mesh size1x is assumed to be constant for sake of clarity. For the one-dimensional
case, the solution is approximated by

uh|I j
= u1, j + 2

1x
(x − xj )u2, j = ū j + 2

1x
(x − xj )u2, j , (10)

where the degrees of freedom ofuh areu1, j andu2, j , which are respectively designed for
the approximation of the mean value of the solution (denoted byū j ) and of the solution
gradient on the intervalI j .

The slope limiter35h must

(i) maintain the conservation of mass element by element,
(ii) not degrade the accuracy of the method,

(iii) decrease the gradient of the resulting approximate solution that must be less or
equal to those issued from discontinuous Galerkin space discretization.

The following generalized slope limiter, proposed by Cockburn and Shu, does satisfy such
conditions:

35huh = ũh = ū j + 2

1x
(x − xj )ũ2, j

= ū j + 2

1x
(x − xj ) minmod(u2, j , ū j+1− ū j , ū j − ū j−1) ∀x ∈ I j (11)

where the minmod function is defined as

minmod(a1, . . . ,am) =
{

smin1≤n≤m|an|, if s= sign(a1) = · · · = sign(am),

0, otherwise.
(12)

Equation (11) can be rewritten as

ũ−j+1/2 = ū j +minmod
(
u j+1/2− ū j , ū j+1− ū j , ū j − ū j−1

)
ũ+j−1/2 = ū j −minmod

(
ū j − u j−1/2, ū j+1− ū j , ū j − ū j−1

)
.

(13)

The resulting RKDG scheme with the slope limiter previously described is proven to be
TVDM. It can be rendered TVBM by modifying the minmod function (see [12]) so as not
to degrade accuracy at local extrema. Then, it relies on the introduction of a constantM ,
which is an upper bound of the absolute value of the solution second-order derivative at
local extrema. The TVB corrected minmod function̄m is defined as

m̄(a1, . . . ,am) =
{

a1, if |a1| ≤ M(1x)2

minmod(a1, . . . ,am), otherwise.
(14)

This way,ũh is defined in a unique manner forPk approximations withk ≤ 2. For greater
values ofk, Cockburn and Shu suggest settingũl , j = 0 ∀l > 3. In other words, in regions
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where limiting is necessary, the development of the numerical solution is locally truncated.
The very interesting property of such a method is that no loss of accuracy takes place at
extrema, even in the uniform norm. However, the difficulty lies in the evaluation of the
constant. Indeed, it can be trivially evaluated in some cases (for example for a piecewise
C2 initial data), but there are some problems for which it is not easy to determine.

The extension by Biswaset al.of this method to the case of higher-order slope limiting is
of great interest. The paper [6] contains numerical results which point out that their proposed
limiting projection does not destroy high-order accuracy where the solution is very smooth.
Furthermore, in practice, solution boundedness is ensured near solution discontinuities. It
relies on the TVDM version of the Cockburn and Shu method, and consists of successively
differentiating the numerical solution. The result of this derivation procedure gives a linear
term which can be treated as in the case of a linear approximation.

Let ξ ∈ [−1,+1] be the reference element. Noting that for Legendre polynomials,

∂ l

∂ξ l
uh|I j
=

l∏
m=1

(2m− 1)ul , j +
l+1∏
m=1

(2m− 1)ul+1, j ξ +
k+1∑

m=l+2

um, j (t)
dl

dξ l
vm, j (ξ). (15)

The limited approximation is written as

35huh(x, t)|I j =
k+1∑
l=1

ũl , j (t)vl , j (x) ∀x ∈ I j , (16)

whose degrees of freedom are defined by

ũl+1, j = 1

2l+ 1
minmod((2l + 1)ul+1, j , ũl , j+1− ũl , j , ũl , j − ũl , j−1), for l = 1, . . . , k.

(17)

In practice, following Biswas, the limiter is applied adaptively. The highest-order coef-
ficient is first limited. The limiter is then applied to successively lower-order coefficients
when the next higher coefficient on the interval is changed by the limiting. This is a way
to maintain accuracy in smooth regions, and to apply limiting procedure only where it is
needed. A comprehensive treatment of the method can be found in [6]. For vector systems,
the limiter is applied to the characteristic fields of the system.

An improved limiter is proposed in the next section. The resulting method is less diffusive
near solution discontinuities and still keeps a good level of accuracy in regions where the
solution is smooth.

2.3. A New Slope Limiter for One-Dimensional Problems

There are two key points to ensure the success of a limiting procedure. First, as it is crucial
to preserve the accuracy of RKDG method in smooth regions, a criterion is necessary to
determine regions where the approximate solution must be limited. This is exactly the aim of
the constantM introduced by Cockburn and Shu in the modified minmod function. Another
criterion is proposed in what follows. It is free of problem-dependence. Secondly, when
limiting, it is necessary to introduce enough numerical diffusion to stabilize the method.
However, a too large amount of viscosity can flatten extrema. Then, a way to balance these
two points must be found.
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Because of the differentiation procedure, the method is suited for any order of accu-
racy once the projection is defined for a linear approximation. In the present section, a
new method is proposed, which combines a basic idea of Van Leer [39] and the method
previously described.

We first address the problem of the definition of a regularity criterion. One interesting
idea concerning the slope limiter previously described relies on the fact that in regions
where the solution is smooth, we haveũ2, j = u2, j , which means that the projection35h

has no effect onuh (it is locally reduced to identity operator). Consequently,

ũ2, j = minmod(u2, j , ū j+1− ū j , ū j − ū j−1) (18)

will be used as a regularity criterion. In other words, “large” gradients are those for which
ũ2, j 6= u2, j .

It remains to define the limiting procedure. The main drawback of (18) appears on regular
extrema which are flattened. This problem is resolved by relaxing the limitation procedure
as

um
2, j = minmod

(
u−j+1/2− ū j , ū j+1− ū j , ū j − ū j−1

)
umax

2, j = minmod
(
u+j+1/2− ū j , u−j+1/2− ū j , ū j − u−j−1/2

)
(19)

ũ2, j = maxmod
(
um

2, j , umax
2, j

)
with the definition of maxmod function

maxmod(a1, . . . ,am) =
{

s max1≤n≤m|an|, if s= sign(a1) = · · · = sign(am),

0, otherwise.
(20)

Remark. The method must be independent of the order in which elements are treated.
A cell’s slope is then limited using the neighboring unlimited slopes, and one must store
the limited slopes and the unlimited slopes separately until all the limited slopes have been
computed.

Solution gradients at interfaces of each cell are then evaluated by two different ways, and
the gradient that less restricts the approximate gradients coming from the discontinuous
Galerkin method is retained.

A very simple example of the projection effects on two configurations is proposed,
in order to understand the action of (19). The projection’s results for an extremum are
explained by referring to Fig. 1. While the minmod function is inclined to flatten the
smooth extremum, the maxmod function (19) does not. Besides, the proposed limiter
correctly suppresses spurious oscillations (as illustrated by the example of nonsmooth
extremum).

The previous method is generalizable toPk approximations. A regularity criterion is
associated to each degree of freedom to determine whether it should be limited or not.

For j = 1, . . . , N andl = k, . . . ,1, we define

um
l+1, j =

1

2m+ 1
minmod((2l + 1)ul+1, j , ul , j+1− ul , j , ul , j − ul , j−1). (21)

If um
l+1, j = ul+1, j , then

35huh|I j
=

l+1∑
s=1

us, j vs, j +
k+1∑

s=l+2

ũs, j vs, j (22)
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FIG. 1. Effects of slope limiters for a smooth (top) and a nonsmooth (bottom) extremum, for piecewise linear
RKDG methods; the proposed limiter (designed by max) and the Biswaset al. [6] limiter (min) act differently for
a smooth extremum.

or else

ũl+1, j = maxmod
(
um

l+1, j , u
max
l+1, j

)
, (23)

where

umax
l+1, j =

1

2m+ 1
minmod

(
(2l + 1)ul+1, j , w

+
l , j+1/2− ul , j , ul , j − w−l , j−1/2

)
w+l , j+1/2 = ul , j+1− (2l + 1)ul+1, j+1

w−l , j−1/2 = ul , j−1+ (2l + 1)ul+1, j−1,

and the limiting procedure goes on.

2.4. Numerical Results

2.4.1. Accuracy test for RKDG method with slope limiter.Two test problems are pro-
posed to illustrate the effective order of convergence of the method (ak+ 1 rate of conver-
gence is expected for aPk approximation). Both are related to the linear scalar transport
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TABLE I

Accuracy for 1D Transport Equation, u0(x) = sin(πx)

P1 (Second order) P2 (Third order) P3 (Fourth order)

1x L1-error Order L1-error Order L1-error Order

Unlimited 1/16 2.60E-03 — 2.88E-05 — 3.31E-07 —
1/32 6.49E-04 2.00 3.60E-06 3.00 2.07E-08 4.00
1/64 1.62E-04 2.00 4.50E-07 3.00 1.29E-09 4.00
1/128 4.05E-05 2.00 5.62 E-08 3.00 8.09E-11 4.00
1/256 1.06E-05 2.00 7.03E-09 3.00 5.20E-12 3.95

DGmin 1/16 1.35E-02 — 2.68E-04 — 3.32E-06 —
1/32 2.83E-03 2.25 2.88E-05 3.21 1.72E-07 4.26
1/64 5.86E-04 2.27 2.95E-06 3.29 9.17E-09 4.23
1/128 1.21E-04 2.26 3.00E-07 3.29 4.79E-10 4.25
1/256 2.57E-05 2.24 3.03 E-08 3.30 2.56E-11 4.22

DGmax 1/16 1.10E-02 — 2.13E-04 — 1.43E-06 —
1/32 2.36E-03 2.23 2.41E-05 3.14 1.08E-07 3.72
1/64 4.86E-04 2.28 2.61E-06 3.20 7.26E-09 3.89
1/128 1.02E-04 2.25 2.79E-07 3.22 4.30E-10 4.07
1/256 2.18E-05 2.22 2.93E-08 3.25 2.44E-11 4.14

equation

ut + ux = 0, −1≤ x ≤ 1

u(x, 0) = u0(x),

with periodic boundary conditions.
Tables I and II show the errors for the initial conditionu0(x) = sin(πx) at timet = 1.

The results obtained with the unlimited DG method are compared with the errors of the
limited scheme with the Biswaset al. limiter (denoted by DGmin where min stands for

TABLE II

Accuracy for 1D Transport Equation, u0(x) = sin(πx)

P1 (Second order) P2 (Third order) P3 (Fourth order)

1x L∞-error Order L∞-error Order L∞-error Order

Unlimited 1/16 2.85E-03 — 3.22E-05 — 4.62E-07 —
1/32 6.81E-04 2.06 4.03E-06 3.00 2.89E-08 3.99
1/64 1.66E-04 2.03 5.04E-07 3.00 1.81E-09 3.99
1/128 4.10E-05 2.02 6.29E-08 3.00 1.13E-10 3.99
1/256 1.02E-05 2.01 7.86E-09 3.00 7.96E-12 3.83

DGmin 1/16 3.17E-02 — 8.75E-04 — 1.43E-05 —
1/32 1.05E-02 1.59 1.64E-04 2.41 1.31E-06 3.44
1/64 3.47E-03 1.60 2.92E-05 2.49 1.21E-07 3.44
1/128 1.13E-03 1.61 5.10E-06 2.51 1.10E-08 3.45
1/256 3.68E-04 1.62 8.88E-07 2.52 1.00E-09 3.46

DGmax 1/16 2.75E-02 - 8.01E-04 — 6.31E-06 —
1/32 1.04E-02 1.39 1.50E-04 2.42 7.91E-07 2.99
1/64 3.17E-03 1.72 2.74E-05 2.45 9.78E-08 3.01
1/128 8.97E-04 1.82 4.97E-06 2.46 1.00E-08 3.28
1/256 2.95E-04 1.60 8.8E-07 2.49 9.59E-10 3.39
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TABLE III

Accuracy for 1D Transport Equation, u0(x) = sin4(πx)

P1 (Second order) P2 (Third order) P3 (Fourth order)

1x L1-error Order L1-error Order L1-error Order

Unlimited 1/16 0.18E-01 — 0.43E-03 — 0.18E-04 —
1/32 0.26E-02 2.75 0.51E-04 3.03 0.11E-05 4.00
1/64 0.55E-03 2.25 0.64E-05 2.99 0.71E-07 4.00
1/128 0.13E-03 2.06 0.79E-06 3.00 0.45E-08 4.00
1/256 0.32E-04 2.02 0.99E-07 3.00 0.28E-09 4.00

DGmin 1/16 0.81E-01 — 0.90E-02 — 0.19E-02 —
1/32 0.17E-01 2.25 0.10E-02 3.12 0.74E-04 4.70
1/64 0.34E-02 2.33 0.10E-03 3.31 0.31E-05 4.57
1/128 0.66E-03 2.34 0.10E-04 3.33 0.13E-06 4.59
1/256 0.13E-03 2.31 0.10E-05 3.33 0.57E-08 4.51

DGmax 1/16 0.78E-01 - 0.77E-02 — 0.14E-02 —
1/32 0.16E-01 2.24 0.95E-03 3.02 0.62E-04 4.49
1/64 0.33E-02 2.33 0.10E-03 3.25 0.28E-05 4.46
1/128 0.65E-03 2.34 0.10E-04 3.30 0.12E-06 4.53
1/256 0.13E-03 2.31 0.10E-05 3.31 0.55E-08 4.48

minmod) and the new one (denoted by DGmax for maxmod). Both of the DGmin and the
DGmax methods do not affect the rate of convergence of the scheme in the L1-norm, but a
loss of accuracy shows up in the L∞-norm (around half a power of the rate of convergence
is lost).

A much tougher case is now considered with the initial conditionu0(x) = sin4(πx).
Results at time t= 1 are summarized in Tables III and IV. The limiters still keep the high
order of accuracy.

TABLE IV

Accuracy for 1D Transport Equation, u0(x) = sin4(πx)

P1 (Second order) P2 (Third order) P3 (Fourth order)

1x L∞-error Order L∞-error Order L∞-error Order

unlimited 1/16 0.19E-01 — 0.35E-03 — 0.15E-04 —
1/32 0.35E-02 2.47 0.43E-04 3.03 0.93E-06 3.98
1/64 0.67E-03 2.37 0.54E-05 2.99 0.58E-07 3.99
1/128 0.14E-03 2.24 0.68E-06 3.00 0.36E-08 4.00
1/256 0.32E-04 2.14 0.84E-07 3.00 0.23E-09 3.99

DGmin 1/16 0.12E+00 — 0.98E-02 — 0.25E-02 —
1/32 0.42E-01 1.48 0.19E-02 2.39 0.19E-03 3.75
1/64 0.14E-01 1.57 0.33E-03 2.48 0.12E-04 3.94
1/128 0.46E-02 1.60 0.59E-04 2.50 0.77E-06 4.01
1/256 0.15E-02 1.62 0.10E-04 2.52 0.48E-07 4.00

DGmax 1/16 0.11E+00 - 0.82E-02 — 0.25E-02 —
1/32 0.41E-01 1.47 0.18E-02 2.20 0.18E-03 3.77
1/64 0.14E-01 1.56 0.32E-03 2.46 0.12E-04 3.90
1/128 0.46E-02 1.60 0.58E-04 2.47 0.76E-06 4.01
1/256 0.15E-02 1.62 0.10E-04 2.51 0.48E-07 4.00
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FIG. 2. Sod shock-tube problem. 100 points. The resulting density contours of employing the new limiter,
exact solution (solid line), approximate solution (◦). k = 1 (top) andk = 2 (bottom).

2.4.2. Riemann problems of nonlinear conservation law system.The system of Euler
equations is now considered. The first selected test case is Sod’s problem with initial
conditions

U = [ρL , uL , pL ]T = [1, 0, 1], if 0 ≤ x ≤ 0.5

= [ρR, uR, pR]T = [0.125, 0, 0.1], if 0.5≤ x < 1.

The results can be compared for example with those of Ref. [13].
As illustrated by Figs. 2 and 3, the proposed limiter is suitable for scalar one-dimensional

hyperbolic conservation laws with discontinuities. For linear approximations, it performs
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FIG. 3. Sod shock-tube problem. 100 points. The resulting velocity contours of employing the new limiter,
exact solution (solid line), approximate solution (◦). k = 1 (top) andk = 2 (bottom).

very well, despite the fact that the maxmod function authorizes greater gradients than the
initial minmod function. TheP2 version of the limiter is also well adapted for shock-
capturing, since oscillations are not developed.

The next test case concerns initial conditions

U = [ρL , uL , pL ]T = [3.857143, 2.629369, 10.333333], whenx < −4

= [ρR, uR, pR]T = [1+ 0.2sin(5x), 0, 1], whenx ≥ −4.

This test problem, elaborated by Shu and Osher [37], is well adapted to demonstrate the
advantage of higher-order methods since the solution has smooth structures interspersed
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FIG. 4. Shu and Osher’s test case. The resulting density contours of employing the new limiter. 300 points.
Exact solution (solid line),P1 (top) andP2 (bottom) approximate solutions (◦).

with discontinuities. The results obtained with the proposed method are shown in Figs. 4
and 5. It is clear that theP2 version of slope limiter performs much better than the linear
one. The improvement resulting from the use ofP3 approximations is also seen. It is
better illustrated by results obtained with 200 points; see Fig. 6. Furthermore, the proposed
limiter is seen to improve significantly the results obtained using the Biswaset al. limiter
(see Fig. 5 for fourth-order of accuracy). A similar behavior is observed for any order
of approximation. The introduction of the maxmod function leads to much less diffusive
results whatever the order of accuracy.

In summary, the accuracy is maintained in regions where the solution is smooth. The pro-
jection 35h of course leads to additional error but does not reduce the order of
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FIG. 5. Shu and Osher’s test case. 300 points. Exact solution (solid line) andP3 approximate solution (◦).
The resulting density contours of employing the new limiter (top) and the Biswaset al. limiter (bottom).

convergence of RKDG scheme. This is accomplished in a fully problem-independent way.
On the other hand, the numerical solution is getting better and better in the neighborhood
of the solution’s discontinuity, when the degree of the polynomialk is increased.

3. EXTENSION TO MULTIDIMENSIONAL SYSTEMS

The adaptation of the method to multidimensional unstructured meshes raises numerous
problems, among them the problem of stability. This section presents the extension to
triangular meshes of the new stabilization method described for one-dimensional problems.
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FIG. 6. Shu and Osher’s test case. 200 points. Exact solution (solid line) and approximate solution (◦). k = 2
(top) andk = 3 (bottom).

To achieve that, we take advantage of the paper by Cockburn and Shu [17], which contains an
adaptation of their slope limiter to the case of unstructured grids for linear approximations.
After the description of the process forP1 approximations, theP2 case is considered.

3.1. The Dubiner Set of Basis Functions

We start by introducing useful notations. LetTh be a triangulation ofÄ. The approximate
solutionUh(x, t), for fixed t ∈ [0, T ], belongs to the finite dimensional space

Vh = {vh ∈ L∞(Ä) : vh|T ∈ V(T), ∀T ∈ Th}, (24)

whereV(T) is a space locally defined. We takeV(T) = Pk(T).
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FIG. 7. Transforms between standard triangleT̂ and standard quadrilateralQ̂.

The approximate vector solutionUh is expressed as

Uh(x, t) =
n∑

i=1

Ui (t)8i (x) ∀x ∈ T, (25)

whereUi (t) are the degrees of freedom and{8i }ni=1 a basis forV(T). The scheme im-
plementation can be made more effective thanks to the choice of the polynomial basis. In
accordance with the papers by Sherwin and Karniadakis [32–34], a spectral basis developed
by Dubiner [21] is used. It is recalled in what follows.

The following standard triangle and quadrilateral are considered

T̂ = {(r, s), −1≤ r, s ; r + s ≤ 0} (26)

and

R̂= {(a, b), −1≤ a, b ≤ +1}. (27)

The basis functions can equivalently be written inT̂ or R̂ thanks to the transforms (see
Fig. 7)

FT̂/R̂ :

T̂ → R̂

(r, s)→
{

a = 21+r
1−s − 1

b = s

and

FR̂/T̂ :

R̂→ T̂

(a, b)→
{

r = (1+a)(1−b)
2 − 1

s= b
.

Finally, the basis functions{glm}(l ,m)∈Swith S= {l ≥ 0, m≥ 0, l ≤ L , l +m≤ M, L ≤
M} are defined by

glm = P0,0
l (a)(1− b)l P2l+1,0

m (b)
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wherePα,β
n (x) is thenth order Jacobi polynomial forα andβ integer parameters,

Pα,β
n (x) =

n∑
j=0

(
n+ α
n− j

)(
n+ β

j

)(
x − 1

2

) j(x + 1

2

)n− j

.

This basis is orthogonal and hierarchical. In addition, by evaluating the basis functions
on the quadrilateral element, the volume integrals can be degenerated into the product of
two one-dimensionnal integrations and then efficiently evaluated.

3.2. Limiter for a P1 (Second-Order) Approximation

Let us start with the case of the linear approximation to describe the limiting procedure.
The Cockburn and Shu limiter is first reviewed. The mean value ofUh on the triangleK0

is denoted

ŪT = 1

|T |
∫

T
Uh(x) dx. (28)

For the set of Dubiner basis functions, it is reduced toŪT = U1,T .
We introduce

Ũh(x) =
3∑

i=1

Ui (t)8i (x)− ŪT . (29)

Given a triangleK0, its neighbors are denoted byK1, K2, andK3, and the middles of the
edge j by mj (see Fig. 8). The purpose is to restrictŨh in order to haveUh(x) ∈ [a, b],
wherea = min{ŪK0, ŪK1, ŪK2, ŪK3} andb = max{ŪK0, ŪK1, ŪK2, ŪK3}.

The method consists of limiting̃Uh on the middle of the edges ofK0. It comes to
determineŨ1, Ũ2, andŨ3 on K0 such that

Ũh(x) =
3∑

i=1

Ũi (t)8i (x). (30)

FIG. 8. Notations for the neighbors of the triangleK0.
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FIG. 9. Notations for the approximate solution on interfacej .

The modified quantities̃Uh(mi ) for i = 1, 2, 3 are denoted by1i .
Finally, one gets on triangleK0,

35hUh = (U1+ Ũ1)81+ Ũ282+ Ũ383, (31)

with

Ũ1 = 1

3
(11+12+13)

Ũ2 = −1

3
(211−12−13)

Ũ3 = 1

2
(12−13).

(32)

Necessarily, in order to preserve the mean value ofUh on K0, we must havẽU1 = 0.
Otherwise, a modification on1i is performed to maintain the conservation of mass element
by element (see [17] for more details).

The calculation of the quantities1i is based on a geometrical property, namely the
existence of nonnegative coefficientsαi andβi , i = 1, 2, 3 such that

m1− B0 = α1(B1− B0)+ β1(B2− B0)

m2− B0 = α2(B2− B0)+ β2(B3− B0)

m3− B0 = α3(B3− B0)+ β3(B1− B0).

(33)

Quantities1i are defined in the following way:

11 = minmod(Uh(m1)− ŪK0, ν(α1(ŪK1 − ŪK0)+ β1(ŪK2 − ŪK0)))

12 = minmod(Uh(m2)− ŪK0, ν(α2(ŪK2 − ŪK0)+ β2(ŪK3 − ŪK0)))

13 = minmod(Uh(m3)− ŪK0, ν(α3(ŪK3 − ŪK0)+ β3(ŪK1 − ŪK0))),

(34)

whereν > 1.
Now, the objective is to get a less diffusive method. For a given point P on interface j,

U−h (P) is referred to the approximation ofU(P) issued from triangleK0, andU+h (P) the
approximation issued fromK j (see Fig. 9).
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The following method, which brings in a very simple procedure, improves greatly the
numerical results. We define

1 j,m = minmod
(
U−h (mj )− ŪK0, ν

(
α j
(
ŪK

′
1
− ŪK0

)+ β j
(
ŪK

′
2
− ŪK0

)))
. (35)

“Large” gradients are identified by1 j,m 6= U−h (mj )− ŪK0. If the equality is satisfied,
then the quantityU−h (mj )− ŪK0 is preserved. Otherwise, the maxmod function is intro-
duced to relax the minmod function effects according to the approximate solution regularity.
We introduce

1 j,max= minmod(U−h (mj )− ŪK0,U
+
h (mj )− ŪK0). (36)

Limited gradients are defined by

1 j = maxmod(1 j,m,1 j,max). (37)

3.3. Limiter for a P2 (Third-Order) Approximation

As shown for one-dimensional problems, the differentiation process allows the adaptation
of the slope limiter to any order of polynomial approximations. Given the good numerical
results obtained in 1D, the method is generalized toP2 case by making use of the same
methodology.

A question which arises from the elaboration of the technique for triangular meshes is
concerned with the direction of derivatives and quantities to be limited. Two methods can be
used. First, derivatives in the flow direction can be computed and limited, in order to derive
a totally multidimensional proceeding. This feasibility has been ruled out since the way of
establishing a well-defined method is not clear. Second, one way consists of differentiating
along the vector joining the center of gravity of each triangle to the middle of its edges.
It leads to a scheme which depends on the mesh geometry (as for the Cockburn and Shu
method) which is presented in what follows.

Givenni =
−−→
B0mi

|
−−→
B0mi |

(i = 1, 2, 3) normalized vectors on triangleK0. The quantities to be

limited are

Wh,ni =
∂U−h
∂ni

(mi )− ∂Uh

∂ni
(B0). (38)

The affected triangle is not precised when there is no ambiguity. Vectorsni are computed
in reference to triangleK0. Moreover, as jumps are permitted at interfaces of elements,
there are two different values for the approximate solution on each edge of the triangles.
Symbol− is related to values onK0 and symbol+ to values on one of its neighbors.

Now, the method can be fully defined. Let us define

Zh,ni = αi

(
∂Uh

∂ni
(B

′
1)−

∂Uh

∂ni
(B0)

)
+ βi

(
∂Uh

∂ni
(B

′
2)−

∂Uh

∂ni
(B0)

)
. (39)
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We set

12ni ,m = minmod(Wh,ni , νZh,ni ) (40)

and

12ni ,max= minmod

(
Wh,ni ,

∂Uh

∂n+i
(mi )− ∂Uh

∂ni
(B0)

)
. (41)

Finally, if 12ni ,m 6= Wh,ni then12ni = maxmod(12ni ,m,12ni ,max) takes the place of
Wh,ni (for i = 1, 2, 3).

Contrary to the one-dimensionnal case, the change fromP1 to P2 basis adds three
degrees of freedom. To overcome this difficulty, degrees of freedomŨ4, Ũ5, andŨ6 are
computed by freezing the momentsU1, U2, andU3 (momentsŨ1, Ũ2, andŨ3 are computed
with the method elaborated for linear approximations). In brief, on triangleK0 we come
down to the system to be inversed

∂Uh

∂n1
(m1)− ∂Uh

∂n1
(B0) = G1(U1,K0,U2,K0,U3,K0)+

6∑
i=4

γi Ũi,K0

∂Uh

∂n2
(m2)− ∂Uh

∂n2
(B0) = G2(U1,K0,U2,K0,U3,K0)+

6∑
i=4

ξi Ũi,K0

∂Uh

∂n3
(m3)− ∂Uh

∂n3
(B0) = G3(U1,K0,U2,K0,U3,K0)+

6∑
i=4

µi Ũi,K0,

(42)

with

G j =
3∑

i=1

Ũi,K0

(
∂φi

∂n j
(mj )− ∂φi

∂n j
(B0)

)
j = 1, 2, 3

γi = ∂φi

∂n1
(m1)− ∂φi

∂n1
(B0) i = 1, 2, 3

ξi = ∂φi

∂n2
(m2)− ∂φi

∂n2
(B0) i = 1, 2, 3

µi = ∂φi

∂n3
(m3)− ∂φi

∂n3
(B0) i = 1, 2, 3.

(43)

The regularity criterion of the solution is based on termsU4, U5, andU6. In practice, the
following test is used:

1. If Ũ4 = U4, Ũ5 = U5, andŨ6 = U6, then limiter’s effects on the linear part of the
approximation are suppressed:

Ũ1 = U1, Ũ2 = U2, Ũ3 = U3,

or else,
2. all the degrees of freedom ofUh are limited.

By this process, as for the one-dimensional case, the limiting procedure is generalizable
to Pk approximations. One only has to differentiate the approximate solution several times
to get a linear term which can then be limited with the method based onP1 approximations.
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FIG. 10. Notations for the limiting procedure at solid walls.

3.4. Boundary Conditions

The main difficulty is to impose the slip condition on the walls in a stable way. As
mentionned in [3], the inviscid interface integral terms are constructed with a technique
traditionally used in upwind finite volume schemes. The flux functionF(U) · n is replaced
by a numerical flux functionh(U−,Ubc; n), depending on the internal interface stateU−

and the boundary conditionUbc. At solid walls, the flux functionF(U) · n is equal to the
pressure contribution in the direction normal to the wall. The pressure is taken from the
internal boundary state.

In addition, a special treatment is necessary for the limiting procedure. Indeed, to limit
the gradients of the approximate solution on the sides of a triangleK0, the method makes
use of the three neighborsK1, K2, and K3. The formulation for a solid wall boundary
condition is presented in what follows.

Given a triangleK0 on the domain boundary, its edges are denoted byej , ( j = 1, 2, 3),
with e1 ∩ ∂Ä 6= ∅ andej ∩ ∂Ä = ∅ for j = 2, 3.

For the limiting procedure, boundary conditions are imposed by providing a complete
solution on the dummy cellK ′0 (see Fig. 10). The exterior solution is reconstructed from
the interior one by considering the Gauss points used to evaluate the volume integrals. Let
M be a Gauss point on triangleK0, M ′ its symmetric onK ′0. A symmetry technique is
used point by point, whereby the stateUh(M ′) on cell K ′0 has the same density, internal
energy, and tangential velocity component ofUh(M) and the opposite sign normal velocity
component.

In order to increase the stability, the limiting procedure is slightly modified to involve a
vector normal to the boundary, as in Bruneau and Rasetarinera [8]. For a linear approxima-
tion, the gradients ofUh are then limited on the middlesm2 andm3 of the edgese2 ande3,
and on the orthogonal projection of the center of gravity of the triangleK0 on the boundary
edgee3.

For a third-order approximation, the quantity to be limited related to the boundary edge
is

∂Uh

∂n
(H)− ∂Uh

∂n
(B0),

with n = −−−→B0H .
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FIG. 11. Shu and Osher’s test case. The resulting density contours of employing the new limiter defined for
the two-dimensionnal method.P1 (top) andP2 (bottom) approximate solutions. 300 points in the direction of the
flow field.

3.5. Numerical Results

3.5.1. Shu and Osher test case.This test case is reconsidered with the two-dimensional
slope limiter to show that the procedure elaborated for the one-dimensional case has been
well extended to triangular meshes. The mesh is obtained from a Cartesian mesh that
contains 300 points in the direction of the flow field and 2 points in the other one. It contains
1200 elements. Numerical results exhibit an improved solution withP2 approximation (see
Fig. 11 for comparison). The proposed algorithm for unstructured meshes leads to bounded
solutions near discontinuities. In addition, aP2 truncated solution is shown on Fig. 12. It
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FIG. 12. Shu and Osher’s test case. AP2 approximate solution in regions of regularity andP1 approximation
near solution discontinuities (top) and aP2 approximate solution without applying the regularity criterion (bottom).
Two-dimensional solution, 300 points in the direction of the flow field.

has been obtained as follows: The approximate solution has been locally reduced to a linear
term in the vicinity of shocks. It uses a high-order accurate scheme in regions where the
solution is smooth, and uses a limited linear approximation near solution discontinuities.
Extrema of the resulting solution are more flattened that those of the not-truncated solution.
Finally, Fig. 12 shows the improvement that results from the regularity criterion previously
described. The limiting procedure has been systematically applied (without first localizing
large solution gradients). Therefore, the whole procedure is needed.
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FIG. 13. The coarsest uniform mesh for test accuracy with the linear transport equation.

Some test results about accuracy follow for the second- and the third-order limited
schemes.

3.5.2. Accuracy test.The first example is the two-dimensional linear equationut + ux +
uy = 0 with the initial conditionu0(x, y) = sin(π(x + y)) (−1≤ x, y ≤ 1) and periodic
boundary conditions. Uniform triangular meshes are first considered. Issued from a uniform
Cartesian mesh, they are obtained by adding one diagonal line in each rectangle. The
coarsest one is shown in Fig. 13. It corresponds toh = h0 = 1/2, where h is the length of
the rectangles. The results at timet = 2 are shown in Table V.

Nonuniform meshes are considered next. The coarsest mesh is shown in Fig. 14. A series
of meshes is obtained by refining the mesh in a uniform way (each triangle is divided into
four smaller ones). The results are presented in Table VI.

FIG. 14. The coarsest nonuniform mesh for test accuracy with the linear transport equation.
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TABLE V

Accuracy for ut + ux + uy = 0, u0(x, y) = sin(π(x + y)): Uniform Meshes

L1-norm L∞-norm

Scheme h Error Order Error Order

P1-unlimited
h0

2
0.31E-01 — 0.44E-01 —

h0

4
0.60E-02 2.34 0.99E-02 2.14

h0

8
0.13E-02 2.22 0.29E-02 1.79

h0

16
0.30E-03 2.13 0.76E-03 1.91

P2-unlimited
h0

2
0.11E-02 — 0.33E-02 —

h0

4
0.13E-03 3.04 0.42E-03 2.99

h0

8
0.16E-04 3.01 0.52E-04 3.00

h0

16
0.20E-05 3.00 0.65E-05 2.99

P1-limited
h0

2
0.61E-01 — 0.76E-01 —

h0

4
0.17E-01 1.83 0.42E-01 0.86

h0

8
0.45E-02 1.93 0.18E-01 1.26

h0

16
0.11E-02 2.02 0.56E-02 1.66

P2-limited
h0

2
0.33E-02 — 0.76E-02 —

h0

4
0.43E-03 2.96 0.13E-02 2.60

h0

8
0.53E-04 3.00 0.24E-03 2.37

h0

16
0.61E-05 3.12 0.46E-04 2.40

The same equation is reconsidered with the initial conditionu0(x, y) = sin4(π(x + y))
and the same meshes (see Tables VII and VIII). As for the one-dimensional case, a loss of
accuracy takes place in theL∞-norm but not in theL1-norm.

The accuracy of the method for nonlinear problems is illustrated with the system of Euler
equations. This test case is proposed by Shu in [23]. The initial condition is obtained by
adding an isentropic vortex to a mean flow (ρ0 = 1, u0 = 1, v0 = 1, p0 = 1). The vortex
is a perturbation to the velocity(u, v), the temperatureT , the entropyS, and is denoted by
the tilde values

ũ = ε

2π
e0.5(1−r 2)(5− y)

ṽ = ε

2π
e0.5(1−r 2)(x − 5)
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TABLE VI

Accuracy for ut + ux + uy = 0 andu0(x, y) = sin(π(x + y)): Nonuniform Meshes

L1-norm L∞-norm

Scheme h Error Order Error Order

P1-unlimited
h0

2
0.82E-01 — 0.19E+00 —

h0

4
0.17E-01 2.27 0.42E-01 2.15

h0

8
0.37E-02 2.19 0.92E-02 2.19

h0

16
0.86E-03 2.11 0.23E-02 2.00

P2-unlimited
h0

2
0.40E-02 — 0.13E-01 —

h0

4
0.43E-03 3.22 0.19E-02 2.79

h0

8
0.50E-04 3.08 0.23E-03 3.01

h0

16
0.62E-05 3.03 0.27E-04 3.09

P1-limited
h0

2
0.91E-01 — 0.19E+00 —

h0

4
0.20E-01 2.20 0.46E-01 2.01

h0

8
0.50E-02 1.99 0.19E-01 1.26

h0

16
0.12E-02 2.02 0.79E-02 1.29

P2-limited
h0

2
0.10E-01 — 0.24E-01 —

h0

4
0.14E-02 2.89 0.42E-02 2.54

h0

8
0.16E-03 3.06 0.93E-03 2.17

h0

16
0.19E-04 3.11 0.17E-03 2.43

T̃ = − (γ − 1)ε2

8γπ2
e1−r 2

S̃ = 0,

with ε = 5, r =
√
(x − 5)2+ (y− 5)2.

An analytic solution of the problem is known. The computational domain is taken as
[0, 10]× [0, 10] with periodic boundary conditions in both directions. Error are shown at
time t = 2 for uniform and nonuniform meshes (same kind of meshes as for the previous
example) in Tables IX and X. The rate of convergence is preserved in theL1-norm.

Three bidimensional problems are now presented to illustrate the capacity of the new
limiter to capture strong gradients, whatever the order of accuracy of the approximate
solution (two or three for the present paper). It is important to notice that only unstructured
nonuniform triangular meshes are considered.
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TABLE VII

Accuracy for ut + ux + uy = 0 andu0(x, y) = sin4(π(x + y)): Uniform Meshes

L1-norm L∞-norm

Scheme h Error Order Error Order

P1-unlimited
h0

2
0.31E+00 — 0.26E+00 —

h0

4
0.11E+00 1.50 0.88E-01 1.58

h0

8
0.19E-01 2.52 0.19E-01 2.19

h0

16
0.29E-02 2.71 0.34E-02 2.51

P2-unlimited
h0

2
0.64E-01 — 0.54E-01 —

h0

4
0.44E-02 3.86 0.35E-02 3.93

h0

8
0.31E-03 3.83 0.53E-03 2.72

h0

16
0.33E-04 3.25 0.71E-04 2.92

P1-limited
h0

2
0.39E+00 — 0.33E+00 —

h0

4
0.14E+00 1.43 0.14E+00 1.27

h0

8
0.33E-01 2.12 0.52E-01 1.40

h0

16
0.77E-02 2.10 0.19E-01 1.42

P2-limited
h0

2
0.15E+00 — 0.14E+00 —

h0

4
0.27E-01 2.43 0.36E-01 1.94

h0

8
0.42E-02 2.69 0.87E-02 2.05

h0

16
0.34E-03 3.62 0.96E-03 3.17

3.5.3. Reflection of a plane shock from a ramp.This problem was studied in Quirk [29]
and Abgrall [1]. A planar shock initially enters from the left in a quiescient fluid and is
reflected from a 45 degrees ramp. The Mach number isMs = 5.5, and the undisturbed air
ahead of the shock has a density of 1.4 and a pressure of 1. Reflecting boundary conditions
are applied along the ramp and the bottom and the upper of the problem domain. Values
for the initial flow are assigned at the left- and right-hand boundaries. The simulation is
performed with linear approximations. Results obtained with the Biswaset al. limiter and
the new method are compared in what follows.

For such an incident shock wave Mach number and such a reflecting wedge angle, a
double Mach reflection is expected (further details about shock wave phenomena can be
found in [5]). For a linear approximation, the slipstream coming from the Mach stem is
better resolved with the new limiter (see Fig. 15).
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TABLE VIII

Accuracy for ut + ux + uy = 0 andu0(x, y) = sin4(π(x + y)):

Nonuniform Meshes

L1-norm L∞-norm

Scheme h Error Order Error Order

P1-unlimited
h0

2
0.55E+00 — 0.51E+00 —

h0

4
0.20E+00 1.46 0.25E+00 1.02

h0

8
0.52E-01 1.92 0.84E-01 1.60

h0

16
0.85E-02 2.62 0.17E-01 2.33

P2-unlimited
h0

2
0.18E+00 — 0.21E+00 —

h0

4
0.24E-01 2.90 0.37E-01 2.54

h0

8
0.14E-02 4.11 0.28E-02 3.70

h0

16
0.11E-03 3.65 0.39E-03 2.84

P1-limited
h0

2
0.59E+00 — 0.54E+00 —

h0

4
0.21E+00 1.48 0.26E+00 1.03

h0

8
0.54E-01 1.96 0.83E-01 1.66

h0

16
0.11E-01 2.29 0.21E-01 1.97

P2-limited
h0

2
0.23E+00 — 0.27E+00 —

h0

4
0.43E-01 2.45 0.75E-01 1.82

h0

8
0.67E-02 2.67 0.14E-01 2.39

h0

16
0.82E-03 3.03 0.30E-02 2.24

3.5.4. Step marching problem.It concerns a flow past a forward-facing step. This test
case has been extensively studied by Woodward and Colella [41], and is widely present in
the literature (for comparison, see for example [8, 17]). The problem starts with uniform
Mach 3 flow in a wind tunnel containing a step. The wind tunnel is 1 length unit wide and
3 length units long. The step is 0.2 length units high and is located at 0.6 length units from
the inflow plane. Reflecting boundary conditions are applied along the walls of the tunnel,
and inflow and outflow boundary conditions are applied at the entrance and the exit of the
tunnel.

The corner of the step is a singularity. It is well known that if no special treatment is done,
an entropy production is observed in the vicinity of the step corner, and it alters the quality
of the second reflected shock. However, neither artefacts to impose the slip condition at the
corner, nor positivity correction procedure have been employed.
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TABLE IX

Accuracy for the Vortex Advection: Uniform Meshes

L1-norm L∞-norm

Scheme h Error Order Error Order

P1-unlimited
h0

2
0.93E-02 — 0.20E+00 —

h0

4
0.25E-02 1.92 0.48E-01 2.07

h0

8
0.55E-03 2.17 0.11E-01 2.11

h0

16
0.12E-03 2.13 0.30E-02 1.91

P2-unlimited
h0

2
0.16E-02 — 0.18E-01 —

h0

4
0.25E-03 2.64 0.53E-02 1.77

h0

8
0.29E-04 3.13 0.69E-03 2.94

h0

16
0.31E-05 3.20 0.92E-04 2.91

P1-limited
h0

2
0.98E-02 — 0.22E+00 —

h0

4
0.29E-02 1.78 0.61E-01 1.86

h0

8
0.72E-03 1.98 0.18E-01 1.74

h0

16
0.18E-03 1.97 0.69E-02 1.40

P2-limited
h0

2
0.63E-02 — 0.12E+00 —

h0

4
0.10E-02 2.60 0.24E-01 2.29

h0

8
0.83E-04 3.64 0.23E-02 3.34

h0

16
0.77E-05 3.44 0.33E-03 2.85

The value of the CFL number is 0.3 for theP1 and 0.18 for theP2 approximations.
Two unstructured meshes have been considered. The first one (mesh A) contains 13,774
triangles. It is locally refined near the corner. The second mesh (mesh B) contains 14,392
elements. Details of the meshes around the corner are shown in the Fig. 16. The er-
roneous entropy production near the corner induces a numerical boundary layer visible
on the density contours, and especially on the Mach number and the entropy function
contours.

Results are shown in Figs. 17–23. The entropy layer at the downstream bottom wall is
clearly reduced by theP2 approximation, and by a local refinement of the mesh near the
singularity. The reflected shock on the lower part of the step is improved with the higher-
order method. Results obtained with the minmod limiter and k= 1 are shown on Fig. 20.
The maxmod function clearly improves the contact discontinuity.
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TABLE X

Accuracy for the Vortex Advection: Nonuniform Meshes

L1-norm L∞-norm

Scheme h Error Order Error Order

P1-unlimited
h0

2
0.78E-02 — 0.13E+00 —

h0

4
0.21E-02 1.87 0.49E-01 1.40

h0

8
0.49E-03 2.13 0.11E-01 2.17

h0

16
0.12E-03 2.07 0.31E-02 1.78

P2-unlimited
h0

2
0.16E-02 — 0.28E-01 —

h0

4
0.23E-03 2.76 0.60E-02 2.24

h0

8
0.28E-04 3.04 0.77E-03 2.96

h0

16
0.32E-05 3.15 0.10E-03 2.96

P1-limited
h0

2
0.94E-02 — 0.20E+00 —

h0

4
0.29E-02 1.71 0.65E-01 1.61

h0

8
0.73E-03 1.97 i0.23E-01 1.53

h0

16
0.18E-03 2.02 0.89E-02 1.35

P2-limited
h0

2
0.81E-02 — 0.13E+00 —

h0

4
0.12E-02 2.72 0.26E-01 2.33

h0

8
0.11E-03 3.48 0.26E-02 3.30

h0

16
0.14E-04 3.01 0.46E-03 2.50

3.5.5. Shock passing a backward facing corner.This last test case is presented to
demonstrate the ability of the new method to evaluate strong gradients. The computational
domain isÄ = ([0, 1]× [6, 11]) ∪ ([1, 13]× [0, 11]). A right-moving shock ofMs = 5.09
is initially located atx = 0.5. The undisturbed air ahead of the shock has a density of 1.4
and a pressure of 1. Inflow and outflow boundary conditions are applied atx = 0 and
x = 13, respectively. The boundary conditions are reflective everywhere else.

The simulation is performed with theP2-version of the limiter, for two different meshes
(which contain 8464 and 23638 elements, respectively). See results on Fig. 24. Contrary
to [17], no positivity correction procedure is needed to avoid negative density or pressure.
Also, the scheme is not modified at the corner of the step, which is a singularity of the prob-
lem. The limiting procedure is then well adapted to strong shocks even with unstructured
meshes.
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FIG. 15. Reflection of a plane shock from a ramp.P1 results with the minmod limiter (top) and the new one
(middle). A 20, 511-triangle mesh (bottom). Densityρ: 20 equally spaced contour lines fromρ = 2.56 toρ = 19.



FIG. 16. Forward-facing step problem. Detail of the triangulations around the corner. Mesh A contains 13, 774
triangles (top). Mesh B contains 14, 392 triangles (bottom).

FIG. 17. Forward-facing step problem.P1 results with mesh A (top) and mesh B (bottom). Densityρ: 30
equally spaced contour lines fromρ = 0.090338 toρ = 6.2365.



FIG. 18. Forward-facing step problem.P1 results with mesh A (top) and mesh B (bottom). Mach number:
25 equally spaced contour lines from 0.02 to 3.82.

FIG. 19. Forward-facing step problem.P1 results with mesh A (top) and mesh B (bottom). Entropy production
near the step corner: 17 equally spaced contour lines from 0.63 to 1.5.
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FIG. 20. Forward-facing step problem.P1 results with the minmod limiter and mesh B. Densityρ: 30 equally
spaced contour lines fromρ = 0.090338 toρ = 6.2365 (top). Mach number: 25 equally spaced contour lines
from 0.02 to 3.82 (middle). Entropy production near the step corner: 17 equally spaced contour lines from 0.63
to 1.5 (bottom).



FIG. 21. Forward-facing step problem.P2 results with mesh A (top) and mesh B (bottom). Densityρ: 30
equally spaced contour lines fromρ = 0.090338 toρ = 6.2365.

FIG. 22. Forward-facing step problem.P2 results with mesh A (top) and mesh B (bottom). Mach number:
25 equally spaced contour lines from 0.02 to 3.82.
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FIG. 23. Forward-facing step problem.P2 results with mesh A (top) and mesh B (bottom). Entropy production
near the step corner: 17 equally spaced contour lines from 0.63 to 1.5.

4. CONCLUSION

In this paper, a new slope limiter to treat solutions with discontinuities with RKDG
method of arbitrary order of accuracy has been presented. The method is first described for
one-dimensional problems. Numerical results demonstrate that the proposed stabilization
procedure does not degrade the accuracy of the method at smooth extrema in theL1-norm.
Furthermore, solutions with discontinuities are well captured, without spurious oscillations,
whatever the order of accuracy of the method. At last, the resulting numerical approximation
is better as the degree of the polynomial expansion increases.

Next, the new method has been extended to the case of two-dimensional unstructured
triangular meshes, forP1 andP2 approximations. It has been noticed that the procedure is
generalizable to any order of accuracy.

The paper developed extensive details concerning two points, the definition of a regularity
criterion to determine regions where the solution needs to be stabilized, and a way of limiting
without introducing too much numerical viscosity. This is done without any dependence of
the procedure to the considered problem. That is the main first advantage of the proposed
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FIG. 24. Shock passing a backward-facing corner. Details of the triangulation around the corner for the coarse
mesh (top).P2 results with new limiter on the coarse mesh (middle) and the fine one (bottom). Densityρ: 25
equally spaced contour lines fromρ = 0.066 toρ = 7.06.
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scheme, the second one being the capacity of the method to handle unstructured triangular
meshes.
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